
  

Pulsar
Houdini Volume Modeling Plug-ins Suite

Presented by Rony Edde



  

Intro

I. Voxel containers and CFDs paradigm.

II. In house proprietary solutions.

III.Geometry based volume modeling advantages.

IV.Common in house tools limitations and overhead.

V. Proposed solution.

VI.Non CFD volume modeling techniques and solutions.

VII.Real time demos.

VIII.Improvements and TODOs.



  

I. Voxel containers and CFDs

1. Storing volumetric data in voxels is expensive.

2. A 10x10x10 volume doubled in resolution results in 8 times the initial resolution. 

2x 2y 2z => 8 xyz 

1000v => 8000

3. Solving Navier-Stokes equations across all voxels exponentially increases simulation time and in many cases 
alters the results between iterations due to the unpredictable nature of fluids.

4. Smooth look prevents high level of detail at reasonable resolutions.

5. Directors who demand full control when fluid sims are tricky to control.



  

II. In house proprietary solutions

1. Proprietary volumetric tools aren't necessarily an emulation of fluids.  In many cases these techniques are 
used to generate unrealistic elements as well. Here are a few techniques:

1- Use points to generate clouds.

2- Use splines/curves to generate volumetric tubes.

3- Use points to generate wisps.

4- Use surfaces to generate wisps.

2. These methods offer a good array of results that “emulate” a CFD look.  They also generate a very high detail 
volume at increased resolutions without the overhead of running fluid simulations.



  

III. Geometry based volume modeling advantages

1. Time independent.  This gives the ability to farm out all frames simultaneously effectively reducing the time 
taken to generate a full frame range. 

2. Dealing with relatively simple equations to solve, we can increase the volume size or regenerate a volume 
without sacrificing too much time.

3. No need to resim upon manipulating input.

4. Using input geometry to generate a volume gives the user complete control.



  

IV. Common in house tools limitations and overhead

1. Inability To visualize volume in real time without conversion overhead.

2. Need to render with lights to see the volume which is expensive.

3. New hires need to be trained in order to use the scripting language required to create/fill/manipulate buffers.

4. Overhead of converting the input geometry, then sending the data to a proprietary tool which generates the 
volume which could be converted to a Houdini volume for viewing.  This of course is a waste of resources.



  

IV. Common in house tools limitations and overhead



  

V. Proposed solution

In order to bypass the overhead of data conversion and scripting, I developed multi-threaded 
plug-ins for Houdini that run transparent to the user without leaving the Houdini geo engine.  
Here are the advantages to using such a system:

1. Real time feedback in OpenGL.  

2. Uses custom Houdini nodes that keep the work flow active for post processing.

3. Speed gain due to the lack of data conversion and file system overhead.

4. User familiarity with the Houdini interface.



  

V. Proposed solution



  

VI. Non CFD volume modeling techniques

1. Fill with clouds plug-in.

This plug-in generates cloud volumes from input points using a custom Perlin noise implementation.

Input Point Result

Video

file:///C:/Users/moi/Desktop/cloud_vid.sh


  

VI. Non CFD volume modeling techniques



  

VI. Non CFD volume modeling techniques

2. Fill with curves plug-in.

This plug-in generates a noised tube volume from input curves using a custom Perlin noise.

Input Curve Result
Video

file:///C:/Users/moi/Desktop/curves_vid.sh


  

VI. Non CFD volume modeling techniques



  

VI. Non CFD volume modeling techniques

3. Fill with wisps plug-in.

This plug-in generates wisps from input points using custom Perlin noise distribution.

Input Point Result
Video

file:///C:/Users/moi/Desktop/wisps_vid.sh


  

VI. Non CFD volume modeling techniques



  

VI. Non CFD volume modeling techniques

4. Fill with surface wisps plug-in.

This plug-in generates wisps from a mesh using custom Perlin noise distribution based on UVW coordinates.

Input Mesh Result

Video

file:///C:/Users/moi/Desktop/surfacewisps_vid.sh


  

VI. Non CFD volume modeling techniques



  

VI. Non CFD volume modeling techniques

 Inefficient vector interpolation example:



  

VI. Non CFD volume modeling techniques

A faster alternative using normals as an example:



  

VI. Non CFD volume modeling techniques



  

VI. Non CFD volume modeling techniques

UV coordinates interpolation for noise displacement:



  

VI. Non CFD volume modeling techniques

Using frustum buffers reduces the memory footprint and 
optimizes the buffer without sacrificing resolution.

The benefits:

1. More resolution close to camera where it really matters.

2. Volume generation in optimized by processing geometry that 
is only inside the camera frustum.



  

VI. Non CFD volume modeling techniques

Frustum buffer:



  

VI. Non CFD volume modeling techniques

Velocity Paradigm:

When transferring velocity vectors from points to neighboring 
voxels there are 2 possible options for each voxel.

1. Only one point is close enough to directly affects the voxel 
value.

2. More than one point is affecting the voxel and this case 
causes problems because we can only store one velocity 
component value per voxel.



  

VI. Non CFD volume modeling techniques

Two points with different velocity vectors inside the same 
voxel.



  

VI. Non CFD volume modeling techniques

The combined or average value is incorrect.  The result is 
incorrect velocities.



  

VI. Non CFD volume modeling techniques

The solution is to bake the velocity into the density and ignore 
the velocity field.



  

VI. Non CFD volume modeling techniques

Baked velocity example:



  

VII. Real time demos



  

VIII. Improvements and TODOs

1. Generalizing object types with a generic attribute class.

When dealing with several types of primitives and data, it's 
often difficult to store information without previous knowledge 
of the type.  This lead to the development of a simple but 
efficient AttributeContainer class.  

The AttributeContainer class stores multiple arbitrary data 
types in one single object.  This means that we can store an 
entire scene with miscellaneous object types which facilitates 
API updates and changes.



  

VIII. Improvements and TODOs

Sample code usage:



  

VIII. Improvements and TODOs

Output:



  

VIII. Improvements and TODOs

2. GPU Optimization.

Optimizing with the GPU requires 2 main tests to pass.

1. The sub containers should not be too small otherwise time 
would be wasted updating between GPU and CPU memory.

2. The sub voxels need to be bigger than a certain size but not 
bigger than what the GPU memory can handle.



  

Conclusion

Modeling volumes has been a life saver on many feature films 
and they make directors happy.

The speed, control and detail they offer is unprecedented.  
Being able to integrate them within a Houdini pipeline is a 
good advantage for real time visualization and post 
processing.

The result is happy artists, supervisors and Directors.

Thank you so much for your time!


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

